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Abstract— Deployment of teams of aerial robots could enable
large-scale filming of dynamic groups of people (actors) in
complex environments for applications in areas such as team
sports and cinematography. Toward this end, methods for
submodular maximization via sequential greedy planning can
enable scalable optimization of camera views across teams
of robots but face challenges with efficient coordination in
cluttered environments. Obstacles can produce occlusions and
increase chances of inter-robot collision which can violate
requirements for near-optimality guarantees. To coordinate
teams of aerial robots in filming groups of people in dense envi-
ronments, a more general view-planning approach is required.
We explore how collision and occlusion impact performance in
filming applications through the development of a multi-robot
multi-actor view planner with an occlusion-aware objective for
filming groups of people and compare with a formation planner
and a greedy planner that ignores inter-robot collisions. We
evaluate our approach based on five test environments and
complex multi-actor behaviors. Compared with a formation
planner, our sequential planner generates 14% greater view
reward for filming the actors in three scenarios and comparable
performance to formation planning on two others. We also
observe near identical view rewards for sequential planning
both with and without inter-robot collision constraints which
indicates that robots are able to avoid collisions without
impairing performance in the perception task. Overall, we
demonstrate effective coordination of teams of aerial robots in
environments cluttered with obstacles that may cause collisions
or occlusions and for filming groups that may split, merge, or
spread apart. Our implementation and the data used to produce
results for this paper are available via the companion website:
https://greedyperspectives.github.io/

I. INTRODUCTION

The capture of significant events via photos and video
has become universal, and Unmanned aerial vehicles (UAVs)
extend the capabilities of cameras by allowing for view
placement in otherwise hard-to-reach places and tracking
intricate trajectories. Multiple aerial cameras can be used
to not only view an actor from multiple angles simultane-
ously but perform higher functions such as localization and
tracking [1–5], environment exploration and mapping [3, 6],
cinematic filming [7–10], and outdoor human pose recon-
struction [11, 12]. These applications rely on effective col-
laboration between groups of UAVs whereas manual control
may result in poor shot selection and view duplication
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Fig. 1: Multi-Actor View Planning Scenario: Known actor and envi-
ronment geometries as well as actor trajectories and robot start locations
are input into the view-planning system. The planner aims to maximize
coverage-like view reward for all actors for the duration of the planning
horizon. Mesh of CMU campus from [13].

while requiring many coordinated operators. Therefore, au-
tonomous coordination of UAV teams may be necessary for
tasks such as multi-robot filming or reconstruction. How-
ever, directly maximizing domain-specific metrics, such as
reconstruction accuracy, can be difficult to perform online—
this motivates development of proxy objectives that quantify
coverage and detail for multiple views. For example, Bucker
et al. [7] demonstrate cinematic filming through a joint
objective combining collision and occlusion avoidance, shot
diversity, and artistic principles in filming a single actor. We
are interested in similar settings but where robots collaborate
to obtain diverse views of multiple actors—in a cluttered
environment, with occlusions, where robots may observe
multiple actors at once.

While defining an objective can be difficult, planning for
multi-robot aerial systems also presents a challenge: the
vast joint state space, non-convex environment, and non-
linear view rewards make optimal planning intractable. Many
applications exploit problem-specific structures to reduce the
problem complexity such as by optimizing an actor-centric
formation [4, 11, 14] or by altering the search procedure to
generate single-robot trajectories sequentially [1–3, 6, 7]. In
this work, we apply a planning approach much like Bucker
et al. [7], and develop a system design and view rewards that
enable application to a multi-actor setting.

Problem: The dynamic multi-actor view planning problem
consists of generating sequences of camera views over a
fixed planning horizon to maximize a collective view reward
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Fig. 2: View Planning System Overview The multi-actor scenario is translated to an internal planner representation. The Markov Decision Process with
DAG structure encodes collision constraints and view rewards. The Multi-Robot View Plan is produced through sequential greedy planning.

that is a function of pixel densities over the surfaces of the
actors. The primary assumptions for our approach are: known
static environment, known actor trajectories (e.g. scripted
scenarios), and known robot start state. An illustration of
the problem setup is depicted in Fig. 1. These assumptions
are fairly strict for the purpose of evaluating the planning
approach. In practice, our approach could be applied in a
receding-horizon setting based on scripted or predicted actor
trajectories [7].

Contributions: The main contributions of this work are
summarized as:

• An occlusion-aware objective based on rendered camera
views for filming groups of people

• Implementation of a collision-aware multi-robot, multi-
actor view planner

• Evaluation of the view planner in scenarios with chal-
lenging obstacles, occlusions, and group behaviors

Our contributions build on prior work developing perception
objectives based on pixel densities by Jiang and Isler [15]
and work by Hughes et al. [16] developing objectives for
submodular multi-robot settings. This work presents a variant
of such objectives that is occlusion-aware, and we present
results for scenarios with a wide variety of obstacles and
occlusions. These contributions toward objective design also
enable us employ a planning approach similar to Bucker et al.
[7] but for filming multiple actors.

II. RELATED WORKS

Aerial Filming: Aerial perception systems have grown
to widespread use through their success in providing low-
cost filming of conventionally challenging unscripted scenes.
Consumer and commercial systems such as the Skydio S2+
[17] demonstrate single-drone filming capabilities and are
starting to incorporate collaborative multi-drone behaviors
for mapping. Research developing autonomous aerial filming
systems for cinematography has also focused on develop-
ing systems that can perform parametrized actions such as
tracking a subject, rule of thirds framing, or dolly zoom
by methods such as model predictive control to optimize

motion and camera controls [9, 10] and by scheduling multi-
robot missions [18–21]. Another body of work focuses on
learning artistic principles rather than implementing them
by hand [22, 23]. The focus of these works on mission
planning and learning artistic principles is complementary
to our approach which develops a capability for filming
complex group behaviors with occlusions.

A few works address this challenge of filming individual or
group behavior from multiple perspectives [7, 24]. Xu et al.
[24] present an actor-centered controller based on Voronoi
coverage over a hemisphere, and Bucker et al. [7] describe an
approach where robots plan trajectories based on a spherical
discretization centered on the actor. A limitation of these
approaches is that assigning robots to actors does not exploit
the robots’ capacity to observe multiple actors at once.

Motion capture and dynamic scenes: Aerial motion
capture [11, 12, 14, 25] such as to reconstruct the motion
of a moving person is closely related to filming. So far,
these systems consist of a groups of robots that observe a
single moving subject with various degrees of awareness of
obstacles or occlusions. However, all specify either an actor-
centric policy [25] or a formation [11, 12, 14]. Although
actor-centric planning can reduce the search space to ori-
enting the formation versus planning for robots individually,
this choice limits relevance to multi-actor settings. The view
planning approach we present could enable robot teams to
reconstruct motions of complex group behaviors in environ-
ments with varied obstacles and occlusions.

Reconstruction of static scenes: Our view planning
approach also bears similarity to methods for reconstruction
of static scenes [15, 26, 27]. Like these works, our approach
emphasizes design of a view reward and optimizing paths to
maximize that reward. In particular, we draw on the approach
by Jiang and Isler [15] which reasons about pixel densities.

Target tracking and localization: The filming scenario
we study is similar in composition to target localization and
tracking problems that focus on estimating position or motion
of one or more targets [1–5]. While these works sometimes
reason about field-of-view and occlusions [4] this reasoning



is often limited and secondary to the tracking task—a task
that is often formulated in terms of minimizing uncertainty in
target state via an information-theoretic objective [1–3, 5].
Target tracking may also be thought of as representing a
subsystem of a hypothetical filming system that relaxes our
requirement for known trajectories—from this perspective,
we observe that several works in this area apply sequential
and auction-based methods for coordination that are gener-
ally compatible with our approach [1–3, 5].

Sequential and Submodular Multi-Robot Planning:
Typically multi-robot perception planning and information
gathering problems, cannot tractably be solved optimally
due to their combinatorial nature, but greedy methods for
submodular optimization can often promise information gain
or perception quality no worse than half of optimal in polyno-
mial time [28, 29]. Submodular optimization and sequential
greedy planning has been applied extensively to such multi-
robot coordination problems [1–3, 6, 7, 30–32]. However,
questions of occlusions and camera views have been explored
primarily in the setting of mapping and exploration [3, 6].
Lauri et al. [31] present an exception in which eye-in-hand
cameras inspect and reconstruct static scenes. Unlike explo-
ration and mapping, applications involving filming moving
actors can force persistent interaction between robots over
the duration of a scenario or planning horizon, and our
early work on this topic indicates that sequential planning
is important for effective cooperation in settings involving
observing moving subjects [33].

III. PRELIMINARIES

We will begin with some background regarding submod-
ular and greedy planning:

A. Submodularity and Monotonicity

The view reward we employ satisfies monotonicity prop-
erties that are useful in developing our approach to planning
and coordination. Informally, submodularity expresses the
principle of diminishing returns and monotonicity requiring
functions to be always increasing. Given a set of actions Ω,
a set function g maps subsets of actions (robots’ plans) to a
real value (the view reward). A set function is monotonic if
adding elements to a set does not decrease its value; that is
for any A ⊆ B ⊆ Ω then g(A) ≤ g(B). A set function
is submodular if marginal gains decrease monotonically;
specifically, given A ⊆ B ⊆ Ω and C ⊆ Ω \ B, then
g(A∪C)− g(A) ≥ g(B ∪C)− g(B). Objectives related to
perception planning [31, 34] and information gathering [30]
are often submodular, and this corresponds to how marginal
view rewards may diminish given by repeated views of the
same actor from the same perspective.

B. Partition Matroids

A partition matroid can be used to represent product-
spaces of actions or trajectories that arise in multi-robot
planning problems [35, Sec. 39.4]. Consider a view planning
problem involving a team of robots R = {1, . . . , N r} where
each robot i ∈ R has access to a set of actions Ui.

These actions can take many forms such as assignments,
trajectories, or paths. The set of all actions for a robot is
the ground set Ω =

⋃
i∈R Ui. Each robot is assigned one

action from its corresponding set Ui. If there are no collisions
between robots the set of valid and partial assignments forms
a partition matroid: I = {X ⊆ Ω | 1 ≥ |X ∩ Ui| ∀i ∈
R}. To satisfy this structure each robots’ actions must be
interchangeable to satisfy the exchange property of a matroid.
Inter-robot collisions violate this property because swapping
actions can cause conflicts with other robots.

IV. PROBLEM FORMULATION

We aim to coordinate a team of UAVs to maximize
coverage-like view rewards for observing a group of actors
moving through an obstacle-dense environment. Consider a
set of actors A = {1, . . . , Na} each with a set of faces
Fa = {1, . . . , N f

a} where a ∈ A and a set of robots
R = {1, . . . , N r}. Each robot i ∈ R can execute a control
action ui,t ∈ Ui ⊆ SE(2) at time t ∈ {0, . . . , T}. The
robots go on to select a finite-horizon sequence of viable
control actions that form their plans. Additionally, robots
have associated states xi,t ∈ X which is a subset of
SE(2). Sequences of states form the robots’ trajectories
ξi = [xi,0, . . . , xi,T ]—we will occasionally index trajectories
to obtain ξi,t = xi,t. Each trajectory, once fixed, produces
non-collision constraints for all other robots. Given the
trajectories of all actors in SE(3), start states xi,0, and
environment geometry, we aim to find joint collision-free
control sequences U∗ =

⋃
i∈R[ui,0, . . . , ui,T ] that maximize

our objective and fit our motion model.

A. Motion Model

State transitions for each robot are specified by the fol-
lowing motion model

xi,t+1 = fi(xi,t, ui,t) (1)

where fi is defined to only allow collision-free motions to
positions and orientations within a constant velocity con-
straint. Given the time step duration, maximum translational
and rotational velocities are converted to bounds on rotation
and Euclidean distance as illustrated by Fig. 2.

B. Non-Collision Constraints

Robots are considered in collision with the environment
when the discretized state location is occupied by an element
of the environment map that exceeds the robot’s height.
Similarly, a pair of robots is in collision when both occupy
the same discretized cell at the same time. We implicitly
assume a conservative model of the environment (the height-
map and discretization of the state space) to ensure safety
of states that satisfy the obstacle and inter-robot collision
constraints.

C. Camera and View Reward Model

We use a coverage-like reward based on pixel densities as a
proxy for effectively observing an actor. Inspired by [15], we
compute rewards based on cumulative pixel densities ( px

m2 )



for observations of faces from polyhedral representations of
each actor j. We define a function pixels(xi,t, t, j, f)→ R
which returns the pixel density for actor-j’s face f when
observed from a robot’s state at time t.

In order to encourage robots to assume views that uni-
formly cover the actors and their corresponding faces, we
apply a square root to introduce diminishing returns on
increasing pixel densities from multiple views [16]. Finally,
given robot trajectories according to the dynamics (1) and
selected control inputs, the robots obtain the following view
reward for the given face and time:

Rv(t, j, f) =

√∑
i∈R

pixels(xi,t, t, j, f). (2)

The formal statement of monotonicity and submodularity
properties for rewards of this form and the relationship to
coverage are the subject of [16]. Intuitively, (2) obtains
these desirable properties because the square-root is one of
many real functions that increases monotonically but at ever-
decreasing rates.1 If not constrained through the selection
of camera views, the submodularity of our objective based
on (2) would ensure that rewards would be maximized by
distributing all pixels approximately uniformly over the faces
of the actor models. Likewise, submodularity due to the
square-root encourages robots to distribute their views evenly
across the actors and their surfaces. By contrast, summing
pixel densities without the square-root would assign the
same reward for distributing all pixels on one face or for
distributing pixels uniformly. Our approach also allows for
more variation in rewards than for simply thresholding on
range or pixel density.

D. Objective

In addition to maximizing the view reward, we add a re-
ward for stationary behavior Rs(ui,t) to reduce unnecessary
movement whereas

Rs(u) =

{
ϵ if u is stationary
0 otherwise.

(3)

So, robot i ∈ R obtains
∑

t∈{0,...,T} Rs(ui,t) reward for
time-steps it remains stationary. The joint objective is then
as follows:
J (Xinit, U) =∑

t∈{0,...,T}

(∑
i∈R

Rs(ui,t) +
∑
j∈A

∑
f∈Fj

Rv(t, j, f))

)
(4)

where Xinit = [x0, . . . , xNr ] is an array of initial robot
states and U represents the robots’ sequences of control
actions. Since we aim to find the control sequence that
maximizes this objective, our optimal control sequence can
be defined as:

U∗ = argmax
U

J (Xinit, U) (5)

1In fact, any other real function with similar monotonicity properties
other than the square-root would satisfy the requirements of submodularity
and monotonicity. However, we will not focus on the choice amongst such
functions in this work.

V. MULTI-ROBOT MULTI-ACTOR VIEW PLANNING

We now present our multi-drone view planning approach.
The planner aims not only to produce sufficient coverage
over the actors but also to exploit problem structure to
efficiently find single-robot trajectories by greedy planning.

Fig. 3: Actor Coverage (a) UAV camera model frustum observing a
simplified actor geometry. Actor faces are colored slightly differently based
on a face identification system to allow for pixel density computation. (b)
Example camera output from OpenGL internal rendering system.

A. Evaluation of View Reward

To produce an occlusion-aware implementation of our
view reward (2) we compute pixels by implementing an
OpenGL rasterization renderer based on a 2.5D height map
of the environment and simplified actor geometry—we use
polygonal cylinders. We then use a perspective camera based
on specified camera intrinsics to capture an occlusion-aware
representation of the scene from a given robot state. The
system renders the environment via the GPU with a geometry
shader to draw the height-map. To determine how many
pixels the cameras observe for each face, we render the faces
with unique colors associated with the actor and face IDs.
Counting pixels of each color and dividing by the areas of
the faces yields the corresponding pixel densities. Figure 3
illustrates this process and provides an example of a rendered
view.

B. Single-Robot Planning

With the robot state in SE(2) we aim to represent the
single-robot planning problem as a Markov Decision Process
(MDP) which has an underlying Directed Acyclic Graph
(DAG) structure. We use the AI-ToolBox library to represent
and solve the MDP [36]. The MDP state s is represented as
an integer vector:

s =
[
x y θ t

]
Each MDP action a is in the same discrete space, encoding
the next state and incrementing the time by 1. This forces the
MDP structure to be directed since states can never go back
in time. The MDP is constructed with a transition matrix
associating each (s, a, s′) tuple with a transition probability
and a reward matrix associating each (s, a) pair with a reward
according to (4) with knowledge other robots’ actions (to
be introduced in Section V-C). We perform a breadth-first
search over the state space by branching on feasible actions
to populate the transition and reward matrices. As depicted



Fig. 4: Example robot views and joint trajectories from sequential plan in Split test case. Robot first-person views at each time step display viewing of
the actors over the planning horizon.

in Fig. 2, the set of available actions is pruned based on
environmental and inter-robot collisions. This directed MDP
can be solved with one backward pass of value iteration
to find the optimal greedy policy,2 similar to the approach
by Bucker et al. [7]. Following this policy from the initial
state produces the optimal single-robot control sequence.

C. Sequential Planning

Now, we are able to generate the joint view plans for the
multi-robot team. We do so by sequentially planning greedy
single-robot trajectories in an arbitrary order as is common
for methods based on submodular optimization [1–3, 6, 7,
30–32]. With some abuse of notation, each robot maximizes
the objective for itself with access to prior decisions in the
sequence:

Ui = argmax
U

J (Xinit,1:i, U1:i−1 ∪ U) (6)

This forms a series of single-robot sub-problems that we
solve with the value iteration planner (Sec. V-B). Through
the course of this process, we accumulate pixel densities per
each face to evaluate the view reward (2) and filter out states
that would produce collisions with other robots (Sec. IV-B).

1) Suboptimality guarantees and inter-robot collisions:
If we ignore inter-robot collisions, (5) has the form of a
submodular maximization problem with a partition matroid
constraint. Thanks to the famous result by Fisher et al. [29],
sequential greedy planning via (6) is guaranteed to produce
solutions to (5) with objective values no worse than 50%
of optimal. However, inter-robot collisions violate the form
of a partition matroid [6] so solutions that incorporate inter-
robot non-collision constraints will not satisfy this guarantee.
However, if the operating environment is not congested with
robots, these non-collision constraints may not significantly
influence the view rewards in practice. Our simulation results
in Section VI-C support this conclusion that inter-robot
constraints have negligible impacts on solution quality while
averting the serious consequences of collision.

2Our current implementation converges in 5 passes without exploiting
this structure.

D. Time Scaling Analysis

This section seeks to clarify the computational cost of
Algorithm 1. After instantiating the MDP, value iteration for
a single robot runs (ideally) with a single backwards pass
over the reachable states. For planar motion the number of
reachable states at step t is O(t2), and the total number
of states over a horizon of T steps is O(T 3). Inter-robot
collision checking involves computation for each prior robot
at every state, and for a single robot requires O(T 3N r) time.
The total time for the entire sequential planning process is
then O(T 3N r2). This addresses number of robots but not
necessarily increasing problem scale in terms of the number
of actors or environment complexity. Incorporating larger
environments or more actors introduces more nuance. For
example, evaluating the objective (4) is at least proportional
to Na but may be larger depending on the cost of rendering
scenes with different numbers of actors. So, we can also say
that the computation time scales as Ω(T 3N r2Na).

E. Considerations for application to real systems

Now, let us discuss how the proposed approach could be
adapted for implementation on physical robots. First, our
approach relies on known or predicted actor trajectories. This
is reasonable for a scripted sequence such as when filming
a movie—in this case, offline planning may also be reason-
able. However, to account for uncertainty in actor or robot
motions, systems should employ receding-horizon planning;
though practical application would require substantial im-
provement in planning time. Then, for outdoor operation,
GPS is often sufficient for localizing robots [11, 12, 23],
particularly with RTK systems. Although prior works have
implemented visual tracking for a single actor [37], addi-
tional instrumentation on the actors (such as additional GPS
units) may be preferable for multi-actor settings. Then, while
long-horizon prediction may be challenging, a Kalman filter
can provide predictions over a short horizon [37] based on
velocity and orientation. Regarding the map, if robots operate
frequently in the same location (like a sports arena), a pre-
existing map along with local collision avoidance may be



Fig. 5: Multi-robot formations for Nr = 2, 3, 5

appropriate.

Algorithm 1: Sequential Greedy View Planning

1 Initialize Useq ← {}
2 Initialize collisionMap ← {}
3 foreach i in R do
4 Si ← DiscretizeStateSpace(envHeightMap)
5 Ai ← DiscretizeActionSpace(robotMaxMotion)
6 MDP ← BreadthFirstSearch(xi,0, Si, Ai)

// In BFS, Rv is computed at each
explored state. Branching
through availableActions
removes actions that lead to
collision states.

7 πi ← ValueIteration(MDP)
8 {ui,0, . . . , ui,T } ← ExtractTrajectory(πi)
9 Append {ui,0, . . . , ui,T } to Useq

10 ξi ← applyActions(xi,0,{ui,0, . . . , ui,T })
11 addCollisions(ξi)
12 end
13 return Useq

VI. EXPERIMENTS

We evaluate the performance of the sequential view plan-
ner in five test scenarios that aim to demonstrate view
planning under a variety of conditions, and we compare to
a formation planning baseline.

A. Formation Planning

We compare our sequential view planner against an assign-
ment and formation based planner which we model off the
multi-view formations applied in [11, 14] following analysis
by Bishop et al. [38]. We assign equal numbers of robots
to each actor, and groups assume formations as follows.
The formation has a constant radius around an actor and a
separation angle ϕ; for N r > 2 then ϕ = 2π

Nr and when N r =
2 then ϕ = π

2 (see Fig. 5). We directly orient the formation
about the actor to maximize the view reward Rv (including
all actors) at each time-step. The formation planner has a
fixed radius, ignores the motion model (Sec. IV-A), and
does not consider environment and robot collisions; so view
rewards for formation planning are generally optimistic and
require no-extra computation.

Test Name # Robot # Actors Timesteps Env Collision
Merge 4 2 17 Yes

Corridor 2 2 17 Yes
Forest 2∗ 3 20 Yes
Large 18 6 10 No
Split 4 2 15 Yes

TABLE I: Test scenarios and parameters. The formation planner obtains
an extra robot in the Forest scenario “for free” to match the number of
actors

Test Formation Seq. w/o Inter-Robot Sequential

Split 1380 1352 ± 34 rc = 0.4 1351 ± 35
Large 1413 1390 ± 27 rc = 10.7 1381 ± 27
Merge 1149 1275 ± 26 rc = 0.2 1274 ± 28
Corridor 1612 1808 ± 86 rc = 0.8 1812 ± 85
Forest 2114 2534 ± 73 rc = 0.2 2505 ± 116

TABLE II: Average and standard deviation of view reward (Rv) per robot
for all test cases from 10 robot start configurations, comparing baselines
to our approach (sequential). For sequential planning without inter-robot
constraints, we also report the collision rate rc (robots collided per trial).

B. Test Scenarios

Test scenarios are detailed in Fig. 6 and Table I. We use
robots with camera intrinsic parameters of 2500px, 4000px,
and 3000px (focal length, image width, image height). All
drones are placed at 5 meters high with a camera tilt of 10
degrees from the horizon. For each test scenario, we also
specify 10 unique robot starting configurations to introduce
further variation. The scenarios are as follows:
Split: This test case is a simple group split and merge

of 2 actors around an obstacle. A full view sequence from
an example trajectory is displayed in Fig. 4.
Large: Focuses on scaling to larger teams and features

18 robots. Actors move through a series of short walls that
produce occlusions but not collision constraints since they
are below the navigation plane.
Merge: Contains actors moving around a corner in op-

posite directions. This test case investigates implicit actor
assignment with actors being “handed off” at the corner.
Corridor: Tests robots moving through a narrow corri-

dor. This focuses on the collision-aware aspect of the planner.
Forest: This is a dense occlusion/collision environment.

For this scenario we limit sequential planning to two robots,
fewer than the number of actors (three). This test aims
to demonstrate the capacity to adapt to scenarios where
assignments are not possible by evaluating if fewer robots
can achieve similar or better coverage compared with the
formation planner which requires 3 robots due to the mini-
mum of 1 robot per formation. For the purpose of evaluation,
we treat both planners as featuring only two robots when we
report per-robot results.

C. Sequential Planner Performance

Fig. 7 and Table II summarize planner performance across
each of the scenarios in terms of the view reward for
formation planning and sequential planning both with and
without inter-robot collision constraints. We observe that



Fig. 6: Scenarios to evaluate specific aspects of multi-actor view planning. Actors are illustrated as boxes with uniquely colored trajectories. The darkness
of elements in the height map indicates their occupied height. Large is the only test case with no collision obstacles as all elements are below the robot
operating plane.

Fig. 7: Average view reward normalized by the baseline formation planner
performance. 10 unique robot start configurations were specified for the
sequential planners and are compared with the unique output from the for-
mation planner. Both sequential planners outperform the formation planner
baseline in the Merge, Corridor, and Forest scenarios, or else perform
similarly. Sequential planners (with and without collision avoidance) also
behave similarly in terms of view rewards: view rewards for the collision-
aware planner are not impaired, though that planner no longer satisfies
guarantees on solution quality.

sequential planning3 outperforms formation planning in three
of five scenarios—by an average of 13.9% in the Merge,
Corridor and Forest scenarios. Notably, sequential
planning also outperforms formation planning by 18% in
the Forest scenario despite having one fewer robot. We
also observe that inter-robot non-collision constraints do not
significantly impair the performance of sequential planning.
In the Split and Large test cases, all planners perform
similarly. This may be because these scenarios provide more
favorable conditions for the formation planner (and because
the formation planner does respect starting positions or robot
dynamics). Split provides ample space for formations
of two robots to view the actors, and Large has shorter
obstacles that produce occlusions but not collisions.

The sequential planner that ignores inter-robot collisions
guarantees solutions within half of optimal but may allow
robots to collide. Since both versions of the sequential
planner obtain similar solution quality (Fig. 7), we conclude

3Referring to the collision-free version, but both obtain similar perfor-
mance.

inter-robot collision constraints do not significantly impair
performance in this setting. We also report collision rates
rc in terms of robots collided per trial for the sequential
planner that ignores collisions Table II. In most scenarios,
we observe less than one collision per trial except for Large
where ten robots (more than half) collide on average, but we
still do not see a significant difference in objective values.
The Corridor scenario is also highly-constrained, and we
see similar objective values despite increased collisions.

Figure 4 displays the joint view plans and internal view
planner renderings for the Split test case. This figure
illustrates the capacity of sequential planning to optimize
views of one or more actors and to implicitly reconfigure
or “hand-off” assignments over the course of a trial. The
robots all view both actors at t = 2; the pairs split off and
transition to each viewing a single actor by t = 9; and they
go back to jointly viewing actors by t = 14. This behavior
is not manually specified and arises only from optimizing
trajectories and views.

D. Scaling number of robots

Since Rv is a square-root sum of pixel coverage over
the actors, we would expect scaling the number of robots
to follow a similar trend of diminishing returns. In Fig. 8,
we observe this trend with the Large test case for 1–
18 robots. These diminishing returns would correspond—
likely simultaneously—to increasing coverage over viewing
angles of the actors’ faces and gradual (and ideally uniform)
increase in pixel densities. Furthermore, scaling the number
of robots produces nearly linear growth in computation time
even though our approach requires quadratic time asymptoti-
cally (Sec. V-D). This is likely because the cost of inter-robot
collision checks is inconsequential compared to the cost
of solving the single-robot MDPs. Additionally, growth in
planning time slows substantially following the first robot—
because robots share the same camera models we benefit
significantly from caching evaluation of camera views.

VII. CONCLUSION AND FUTURE WORK

In this work, we presented a novel system for multi-robot
view planning based on sequential greedy planning with an
occlusion-aware objective. Through evaluation in five differ-
ent scenarios, we observe sequential planning outperform-
ing formation-based planning and specifically excelling in
obstacle-dense environments. Additionally, we observe simi-
lar perception performance for sequential planning with and



Fig. 8: Computation time and reward accumulated with scaling the number
of robots in the Large test case. The means and standard deviations are
computed across 10 unique start locations.

without inter-robot collision constraints. This demonstrates
that sequential planning is able to find good solutions when
accounting for possible collisions between robots (despite no
longer satisfying requirements for bounded suboptimality).
In future work, we aim to extend this view planner to
a 3D human pose reconstruction task, and optimize our
implementation to run at real-time rates.
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